Increased arterial desaturation in trained cyclists during maximal exercise at 580m altitude

Gore, C.J., Hahn, A.G., Scroop, G.S., Watson, D.B., Norton, K.I., Wood, R.J., Campbell, D.P., Emonson, D. L. 'Increased arterial desaturation in trained cyclists during maximal exercise at 580m altitude', Journal of Applied Physiology, 80(6): 2204-2210, 1996.

This study utilized a hypobaric chamber to compare the effects of mild hypobaria (MH; 50 mmHg, approximately 580 m altitude) on blood O2 status and maximal O2 consumption (VO2max) in 9 untrained and 11 trained (T) cyclists with VO2max values of 51 +/- 3 and 77 +/- 1 ml.kg-1.min-1, respectively. In both groups, arterial O2 saturation (SaO2) decreased significantly during maximal exercise, and this effect was enhanced with MH. Both these responses were significantly greater in the T cyclists in whom the final SaO2 during MH was 86.5 +/- 0.9%. When the group data were combined, approximately 65% of the variance in SaO2 could be attributed to a widened alveolar-arterial Po2 difference. The arterial PO2 during maximal exercise at sea level in the T group was on the steeper portion of the hemoglobin-O2-loading curve (T, 68.3 +/- 1.3 Torr; untrained, 89.0 +/- 2.9 Torr) such that a similar decrease in arterial PO2 in the two groups in response to MH resulted in a significantly greater fall in both SaO2 and calculated O2 content in the T group. As a consequence, the VO2max fell significantly only in the T group (mean change, -6.8 +/- 1.5%; range, + 1.2 to - 12.3%), with approximately 70% of this decrease being due to a fall in O2 content. This is the lowest altitude reported to decrease VO2max, suggesting that T athletes are more susceptible to a fall in inspired PO2.

Related Pages